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In this work—the second of a pair of articles—we consider transport through spatially symmetric quantum
dots with leads whose widths or positions do not obey the spatial symmetry. We use the semiclassical theory
of transport to find the symmetry-induced contributions to weak localization corrections and universal conduc-
tance fluctuations for dots with left-right, up-down, inversion, and fourfold symmetries. We show that all these
contributions are suppressed by asymmetric leads; however, they remain finite whenever leads intersect with
their images under the symmetry operation. For an up-down symmetric dot, this means that the contributions
can be finite even if one of the leads is completely asymmetric. We find that the suppression of the contribu-
tions to universal conductance fluctuations is the square of the suppression of contributions to weak localiza-
tion. Finally, we develop a random-matrix theory model which enables us to numerically confirm these results.
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I. INTRODUCTION

This work is the second of a pair of articles on mesos-
copic transport through chaotic quantum dots with spatial
symmetries �see Ref. �1� for part I�. In both works we use
recent advances in semiclassical techniques to address the
effect of spatial symmetries on weak localization �WL� cor-
rections and universal conductance fluctuations �UCFs�. The
aim of the first article was to identify the microscopic origin
of properties that were earlier only known from phenomeno-
logical random-matrix theory �RMT� �2–5�, and furthermore
to extend the considerations to situations in which RMT is
not easily applicable. In particular, this includes scenarios
where symmetries are only partially preserved. To this end,
the first article �1� also considered the combined effects of
magnetic fields, a finite Ehrenfest time, and dephasing on
symmetric systems and also discussed the reduction of
symmetry-related interference effects by deformations of the
dots.

In the present paper, we contrast this “internal” symmetry
breaking with symmetry breaking which is due to the posi-
tion or shape of the leads �for examples of such situations see
Fig. 1�. We ask what happens to the transport if we take a
symmetric dot coupled to leads which respect the symmetry
and then start moving one of the leads. In the fully symmet-
ric situation, the magnitude of UCFs is doubled for each
independent symmetry, while the weak localization correc-
tion can be either increased or reduced �sometimes remain
unaffected� depending on the spatial symmetry in question
�1–3�. Are these symmetry-induced effects modified when
the leads are deformed or displaced? If so, are they sensitive
to displacement on a quantum scale �of order of a Fermi
wavelength� or a classical scale �of order of a lead width�?

The present literature does not offer much guidance to
answer these questions—indeed, the knowledge on transport
in spatially symmetric systems with displaced leads is rather
limited. Reference �6� reports that the distribution of trans-
mission eigenvalues of a left-right symmetric dot with com-
pletely asymmetrically placed leads differs slightly from the

distribution of a completely asymmetric dot. Because the dif-
ference is small, symmetric systems �such as stadium bil-
liards� with displaced leads are indeed often used as repre-
sentatives of completely asymmetric systems �see, e.g., Refs.
�4,5��. Recent works of one of the authors, on the other hand,
identify a huge conductance peak in weakly coupled mirror-
symmetric double dots which still remains large even when
the leads are not placed symmetrically �7�.

A simple consideration of weak localization quickly con-
vinces us that it could never be as robust as the above-
mentioned huge conductance peak in double dots. In systems
without spatial symmetries, weak localization is the counter-
part of coherent backscattering—particle conservation guar-
antees that you cannot have one without the other. Systems
with spatial symmetries have additional coherent back- and
forward-scattering contributions �as discussed in the first of
this pair of articles �1��. These contributions rely on interfer-
ence between paths that are related by spatial symmetry. If
those paths do not both couple to the leads, they cannot
generate an interference contribution to conductance. Thus,
if we displace one lead so much that there is no intersection
with its spatially symmetric partner �W�=0 in Fig. 1� then
the contributions to coherent forward scattering due to the
spatial symmetries must vanish.

The precise distance by which one has to move the lead to
substantially suppress the symmetry-related contributions de-
pends on the detailed position dependence of the coherent
forward- and backscattering peaks. In principle, these coher-
ent interference patterns could oscillate on a scale of a wave-
length, and thus one might imagine that a small displacement
of that order would suffice. The calculations and numerical
computations presented by us here show that this is not the
case. Instead, the coherent forward- and backscattering peaks
have a width of order the lead width and do not oscillate on
the scale of a wavelength.

These considerations entail that the displacement of leads
in internally symmetric systems offers a unique means to
study coherent forward- and backscattering processes. From
photonic systems it is known that the shape of the coherent
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backscattering cone provides valuable information on the
multiple scattering in a sample �8,9�. Based on the results of
the present work, transport measurements with gradually dis-
placed leads promise to give similar insight into the dynam-
ics of electronic systems.

This work is organized as follows. Section II introduces
notation and provides a condensed review of the basic semi-
classical concepts elaborated in more detail in the first of this
pair of articles �1�. The following sections describe the con-
sequences of displaced leads for the weak localization cor-
rection in systems with left-right symmetry �Sec. III�, inver-
sion symmetry �Sec. IV�, up-down symmetry �Sec. V�, and
fourfold symmetry �Sec. VI�. In Sec. VII we study the mag-
nitude of universal conductance fluctuations for all types of
symmetry. Finally, in Sec. VIII we generalize the phenom-
enological RMT model of symmetry breaking �presented in
�1�� to the case of displaced leads and compare the results of
numerical computations to the semiclassical predictions. Our
conclusions are collected in Sec. IX. The Appendix contains

some further details on the semiclassical calculation of uni-
versal conductance fluctuations.

II. BACKGROUND

To make this paper self-contained we here first fix nota-
tion and then briefly summarize the main concepts of the
theory of semiclassical transport in systems with spatial sym-
metries developed in the first of this pair of articles �1�.

A. Characteristic scales

We consider chaotic quantum dots of size L �area A
=O�L2� and circumference C=O�L�� which may possess any
of the following three types of spatial symmetry: a left-right
mirror symmetry, an inversion symmetry, and an up-down
mirror symmetry. We also consider fourfold symmetric sys-
tems which simultaneously possess all the above symme-
tries. The quantum dot is perfectly coupled to two leads,
labeled left �L� and right �R� and carrying NL and NR modes,
where N�= pFW� / �����1 for ��L,R �here pF is the Fermi
momentum; we also denote the Fermi velocity by vF�. The
quantum dynamics in the dot is characterized by a number of
time scales given by the time of flight �0=�A /CvF between
successive reflections off the boundaries, the dwell time �D
=�0C / �WL+WR�, the dephasing time ��=1 /	� �where 	� is
the dephasing rate�, and a time scale �B= �B0 /B�2�0 on which
a magnetic field destroys time-reversal symmetry. Here, B0
�h / �eA� is a characteristic field strength at which about one
flux quantum penetrates the quantum dot. In transport, the
effect of a magnetic field is felt at a smaller magnetic field

Bc = aB0
��0/2�D, �1�

where a is a system-specific parameter of order 1 �10�. Fur-
thermore, the quantum-to-classical crossover is characterized
by the open-system Ehrenfest time �E

o =
−1 ln�W2 / �L�F��
and the closed-system Ehrenfest time �E

c =
−1 ln�L /�F�,
where 
 is the classical Lyapunov exponent and �F is the
Fermi wavelength �11�.

In contrast to Ref. �1�, we here consider the possibility
that the leads do not respect the symmetry of the dot. As
shown in Fig. 1, the displacement from the symmetry-
respecting position is characterized by the overlap of leads
under the relevant symmetry operation. For left-right mirror
symmetry and inversion symmetry, this is the width W� of
the intersection of a lead with the image of the other lead. An
up-down symmetry maps each symmetry-respecting lead
onto itself. The displacement of lead L �R� is then character-
ized by the width W�L �W�R� of the intersection of this lead
with its own mirror image. In a fourfold symmetric system,
the displacement is characterized by the various widths of
intersections with respect to the individual symmetries
�W�LR for left-right mirror symmetry, W�inv for inversion
symmetry, W�UD:L for up-down mirror symmetry of lead L,
and W�UD:R for up-down mirror symmetry of lead R�.

B. Semiclassical theory of transport

The semiclassical theory of transport �12,13� expresses
the transport through a quantum dot in terms of classical
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FIG. 1. �Color online� �a� A quantum dot with a left-right mirror
symmetry coupled to leads which do not respect that symmetry. The
left lead �L� has width WL; the right lead �R� has width WR. The
intersection between lead L and the mirror image of lead R has
width W�. If the L and R leads have no intersection under the
mirror symmetry then W�=0. �b� Same for a quantum dot with
inversion symmetry. �c� A quantum dot with up-down symmetry for
which each symmetry-respecting lead is mapped onto itself. In the
figure, the left lead is displaced, which reduces the intersection W�L

of this lead with its mirror image.

WHITNEY, SCHOMERUS, AND KOPP PHYSICAL REVIEW E 80, 056210 �2009�

056210-2



paths 	 ,	� which connect point y0 on lead L to point y on
lead R. Summing over lead modes as in Ref. �14�, the di-
mensionless conductance �conductance in units of 2e2 /h� is
given by

g =
1

2��
�

L
dy0�

R
dy �

	,	�

A	A	� ei�S	−S	��/�, �2�

where S	=		pdr denotes the classical action of a path and
the amplitude A	 is related to the square root of the path’s
stability.

For most pairs of 	 and 	� the exponential in Eq. �2�
oscillates wildly as one changes the energy or the dot shape.
Thus, they make no contribution to the average conductance
�where one averages over energy, dot shape, or both�. The
contributions that survive averaging are those where the
pairs of paths have similar actions S	
S	� for a broad range
of energies and dot shapes. In particular, this is the case for
the “diagonal contributions” to the above double sum �with
	�=	�, which can be analyzed using the sum rule �in the
spirit of Eq. �B6� of Ref. �12��

�
	

A	
2� ¯ �	 = �

−�/2

�/2

d�0�
−�/2

�/2

d�pF cos �0

�
0

�

dtP̃�Y,Y0;t�� ¯ �Y0
. �3�

Here we define P̃�Y ,Y0 ; t��y���t as the classical probability
for a particle to go from an initial position and momentum
angle of Y0��y0 ,�0� on lead L to within ��y ,��� of Y
= �y ,�� on lead R in a time within �t of t. The average of P̃
over an ensemble of dots or over energy results in a smooth
function. If the dynamics are mixing on a time scale ��D,

one can approximate �P̃�Y ;Y0 ; t�=e−t/�D cos � / �2�WL
+WR��D�, which results in the classical Drude conductance

�gD =
NLNR

�NL + NR�
. �4�

Quantum corrections to this result originate from correlations
of paths 	 and 	� which are not identical but closely related
by additional discrete symmetries in the system. For asym-
metric quantum dots the only possible additional symmetry
is time-reversal symmetry, which results in the ordinary
weak localization correction �15–17� and associated
coherent-backscattering peak �14,16,18� for systems whose
classical dynamics exhibit hyperbolic chaos. The identifica-
tion of possible pairings is also at the heart of the calculation
of the magnitude var�g� of universal conductance fluctua-
tions, which in the semiclassical theory naturally takes the
form of a quadruple sum over classical paths �19,20�.

Spatial symmetries in such chaotic systems induce further
possible pairings both for the average conductance as well as
for its variance, which are discussed in detail in the first
article in this series �1�. In the following sections we revisit
these results and extend them to the case of displaced leads,
which is far richer than the case of symmetry-respecting
leads.

III. LEFT-RIGHT SYMMETRIC QUANTUM DOT
WITH DISPLACED LEADS

We first consider a left-right mirror-symmetric system
with leads that are �partially or fully� displaced from the
symmetry-respecting configuration. As shown in Fig. 1�a�,
the leads are of different widths and centered at different
places. The amount of symmetry breaking is characterized
by the �possibly vanishing� width W� of intersection be-
tween lead L and the mirror image of lead R. In Fig. 2 we
show the path pairings for all symmetry-induced interference
corrections to the average conductance. �There is a strong
resemblance between these contributions and the weak local-
ization correction for systems with leads that contain tunnel
barriers; in particular compare the failed coherent forward
scattering contributions in Fig. 2 of this paper with the failed
coherent backscattering contributions in Fig. 4 of Ref. �21��.
None of the contributions listed in Fig. 2 are particularly
difficult to calculate using the method presented in the first
of this pair of articles �1�. This method involves folding
paths under the spatial symmetry to find ways in which one
can construct pairings between paths or their images with
pairings switching at “effective” encounters; see Fig. 3. The
difficulty is to find all contributions. One crucial check is to
verify that the sum of all interference contributions to trans-
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FIG. 2. �Color online� List of interference contributions to the
conductance for a dot with left-right mirror symmetry when the
leads are asymmetric. Here the leads have widths WL and WR and
are centered at different places. The intersection of the L lead and
the R lead’s mirror image has a width W� and is indicated by the
unshaded part of the L lead. The sketches on the left are all contri-
butions to transmission from the L lead to the R lead �hence, the
contributions to conductance�. The sketches on the right are all
contributions to reflection from the L lead back to the L lead.
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mission and reflection gives zero thereby ensuring particle
conservation.

The main difference from the equivalent calculation for a
system with symmetric leads �cf. Ref. �1�� is that here a pair
of symmetry-related paths has a shorter joint survival time
than the pairs of identical paths in the diagonal contribution.
When the leads are symmetrically placed, the probability of
a path staying in the dot �not hitting a lead� is strictly iden-
tical to the probability of its mirror image staying in the dot.
This ceases to be the case when the leads are not symmetric.
We deal with this by explicitly considering all situations
where a path hits a lead �in which case it escapes from the
system� or the mirror image of a lead �in which its mirror
image will escapes from the system�. The probability that
either of the processes occurs is �WL+WR−W�� /C per
bounce at the boundary of the dot, where C is the circumfer-
ence of the dot. We therefore define a modified dwell time

�D� = �D
WL + WR

2�WL + WR − W��
= �D

NL + NR

2�NL + NR − N��
, �5�

which characterizes the probability exp�−t /�D� � that a path
and its mirror image are both still in the dot at time t. We use
this probability in place of exp�−t /�D� in evaluating all parts
of contributions 1 and 2 in Fig. 2 where the paths are the
mirror image of each other.

A. Successful and failed forward-scattering contributions

The contribution of paths of the type labeled 1 and 2i–2iv
in Fig. 2 have an effective encounter close to a lead. These
contributions are similar to certain contributions in an asym-
metric system with tunnel barriers �21� and, hence, we use a
similar method to analyze them here. The behavior of path
	� is completely determined by that of path 	 so the two
paths have the same amplitudes, A	�=A	. The action differ-
ence between them is �S	−S	��= �p0�+m
r0��r0�, where
�r0� , p0�� is the component of �Y−Y0� which is perpendicu-
lar to the direction of path 	 at Y �22�. Using the sum rule in
Eq. �3�, we see that the contribution 1 in Fig. 2 is given by
�cf. contribution LR:a in Ref. �1��

��gLR:1 = �2���−2�
�

dY0�
�

dY�
0

�

dtpF

cos �0�P��Y,Y0;t�Re�ei�S	−S	��/�� . �6�

The limits on the integral indicate that we only integrate over
the region of the leads which have an overlap with each other
under the left-right mirror symmetry �the regions of width
W� marked in Fig. 2�.

The survival probability �P��Y ,Y0 ; t�=exp�−t /�D� ��r�� /
���WL+WR−W���D� � is that of a path and its mirror image.
The probability per unit time for path 	 to hit within ��r ,���
of a given point in the region of phase space defined by the
union of leads and their mirror images is �P��Y ,Y0 ; t��Y
where �Y��r��. Note that it is �D� rather than �D which
gives the decay rate of �P��Y ,Y0 ; t�. We express the Y0
integral in terms of the relative coordinates �r0� , p0�� and
define TW� �r0� , p0�� and TL��r0� , p0�� as the time between
touching the lead and the perpendicular distance between 	
and 	� becoming of order W and L, respectively. For times
less than TW� �r0� , p0��, two path segments are closer than a
lead width to each other, and are almost mirror images of the
other two �which are also closer than a lead width to each
other�. Thus their joint survival probability is the survival
probability of a path and its mirror image. For times longer
than this the path pairs escape independently, but since the
pairs are made of a path and its mirror image, the escape rate
is �D� not �D. The t integral in Eq. �6� must have a lower
cutoff at 2TL��r0� , p0�� because that is the minimum time for
reconvergence. �For shorter times there is no contribution,
because path 	 and 	� must separate to a distance of order
the dot size if they are going to reconverge at the other lead�.
Thus, we have

�
�

dY�
0

�

dt�P��Y,Y0;t�

=
N� exp�− TW� /�D� − 2�TL� − TW� �/�D� �

NL + NR − N�

, �7�

where TL,W� are shorthand for TL,W� �r0� , p0��. Note that the �D�
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� �
� �
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(a) Folding procedure in dot with left−right symmetry

(b) Folding procedure in dot with inversion symmetry

(c) Folding procedure in dot with up−down symmetry
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FIG. 3. �Color online� To find the nontrivial path pairings and to
evaluate the phase difference between the paths, we use the folding
procedure introduced in Ref. �1� �for symmetric leads�. Here we
consider the extra contributions generated by the fact the leads are
asymmetric �i.e., contributions 2i–iv in Fig. 2�. For each spatial
symmetry, we give one example of the folding procedure for an
unsuccessful coherent forward-scattering �or backscattering�. The
ellipses mark the effective encounters, where paths interchange
their pairing. The other contributions are easily analyzed in the
same way.
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in the denominator of �P��Y ,Y0 ; t� was cancelled when we
integrated over all times longer than 2TL�. For small �p0�

+m
r0�� we find

TL��r0�,p0�� 
 
−1 ln� m
L

�p0� + m
r0��� �8�

and TW� �r0� , p0�� is given by the same formula with L re-
placed by W. Evaluating the integrals over the relative coor-
dinates �r0� , p0�� as in Ref. �1�, we finally obtain

��gLR:1 = N��2�NL + NR − N���−1exp�− �E
c /�D� � . �9�

The failed coherent forward-scattering contributions la-
beled 2i and 2ii in Fig. 2 come from the window of width
WL−W� in the L lead. This causes an enhanced probability
of hitting the mirror image of that part of lead L. However,
the lead R is not there, so this constructive interference peak
gets reflected back into the dot and has a probability of
NR / �NL+NR� of going to lead R and a probability of
NL / �NL+NR� of going back to lead L �22�. The former is a
contribution to transmission �and hence to the conductance�
while the latter is a contribution to reflection. Thus, we have

��gLR:2i =
�NL − N��NR exp�− �E

c /�D� �
2�NL + NR − N���NL + NR�

, �10�

��RLR:2ii =
�NL − N��NL exp�− �E

c /�D� �
2�NL + NR − N���NL + NR�

. �11�

By inspection of Fig. 2 it follows that ��gLR:2iii is given by
Eq. �10� with NR and NL interchanged, while ��RLR:2iv
= ��RLR:2ii.

B. Uniform contributions to transmission and reflection

To evaluate the uniform contributions to transmission and
reflection, labeled 3i and 3ii in Fig. 2, we divide the pairs of
paths in this contribution into three regions. The first part is
when 	 and 	� are the same and are far from the encounter �a
time TW /2 or more away from the encounter�. Here the prob-
ability for the paths to escape is 1 /�D per unit time. The
second region is where 	� and 	 are the mirror image of each
other and far from the encounter �a time TW /2 or more from
the encounter�. Here the probability of one or both paths to
escape is 1 /�D� per unit time. Finally, the third region is close
to the encounter �less than a time TW /2 away from the en-
counter�. Here the probability for the paths to escape the first
time they pass through this region surrounding the encounter
is exp�−TW /�D�. However, the conditional probability to
escape the second time the paths pass through this region
�given that they both survived the first time� is
exp�−TW�1 /�D� −1 /�D��. It follows that the contribution
3i is given by ��gLR:3i= ����−1	LdY0	d� Re�ei�S	−S	��/��
�F�Y0 ,��, where the action difference �S	−S	�� is the same
as for weak localization in Refs. �16,23� and

F�Y0,�� = 2vF
2 sin ��

TL+TW

�

dt�
TL+TW/2

t−TW/2

dt2�
TW/2

t2−TL

dt1pF

cos �0�
R

dY�
C

dR1P̃�Y,R2;t − t2�P̃�

�R2,R1;t2 − t1�P̃�R1,Y0;t1� . �12�

Since the paths are paired with their mirror image between
time t1 and time t2, the survival rate is �D� during this time,
but it is �D at all other times. Evaluating this integral with
these survival times gives

�F�Y0,�� =
2vF

2�D�D�

2�A

NR

NL + NR
pF cos �0 sin �

exp�− TL���/�D� � . �13�

This has two differences from the result for symmetric leads
in Ref. �1�. The exponent contains �D� not �D and the prefac-
tor contains �D�D� not �D

2 . When integrating over �, we obtain
a factor of �
�D� �−1exp�−�E

c /�D� � in place of �
�D�−1exp�
−�E

c /�D�. Thus, the �D� in the prefactor is cancelled �24�.
Evaluating the integrals, we get

��gLR:3i = − NLNR�NL + NR�−2exp�− �E
c /�D� � , �14�

��RLR:3ii = − NL
2�NL + NR�−2exp�− �E

c /�D� � . �15�

These results are of the same form as the weak localization
correction except that the exponent contains �D� in place of
�D. In particular, we recover the familiar factor of
−NLNR / �NL+NR�2 even though the joint survival time is re-
duced when the paths are mirror images of each other.

One can next include other suppression effects such as
asymmetry in the dot and dephasing, which we discussed for
dots with symmetric leads in Ref. �1�. The only difference
caused by asymmetric leads is that now the parts of contri-
butions affected by asymmetries and dephasing �parts where
paths are paired with their mirror image� decay with a rate �D�
instead of �D. Thus, we find that all the contributions listed in
Fig. 2 are then multiplied by a factor

ZLR� �	asym,	�� =
exp�− 	��̃ − 	asym�̃asym�

1 + �	asym + 	���D�
, �16�

where the expression for the decay rates 	asym and 	� and
time scales �̃ and �̃asym are the same as for a dot with sym-
metric leads �1�.

C. Conductance of a left-right symmetric quantum dot with
asymmetric leads

As required by particle number conservation, the seven
contributions in Fig. 2 sum to zero. In order to obtain the
conductance, we sum the four contributions to transmission
from the left lead to the right lead �contributions 1, 2i, 2iii,
and 3i� and add them to the Drude conductance and the weak
localization correction. This gives the conductance of a cha-
otic left-right symmetric quantum dot with many modes on
each lead �NL ,NR,N��1�,
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�gLR =
NLNR

NL + NR
+

NLNR

�NL + NR�2� N�e−�E
c /�D�

NL + NR − N�

ZLR� �	asym,	��

− e−�E
c /�DZ�B,	��� + O�NL,R

−1 � , �17�

where ZLR� �	asym,	�� is given by Eq. �16�. The second term
in the square brackets is the usual weak localization correc-
tion, which is suppressed by magnetic fields and dephasing
according to the function Z�B ,	��=exp�−	��̃��1+ �B /Bc�2

+	��D�−1. For symmetric leads we have N�=NL=NR �and
hence �D� =�D� and this result immediately reduces to the one
in Ref. �1�.

It is worth considering two special cases. The first case is
when the leads are of equal width but not centered at the
mirror image of each other such that N��NL=NR�N. Tak-
ing �w=1−w� /W=1−N� /N as the relative distance �in
units of the lead width W=WL=WR� by which lead L is
displaced with respect to the mirror image of lead R, and
assuming there is no dephasing, magnetic field, or internal
asymmetry, we find

�gLR =
N

2
+

1

4
�1 − �w

1 + �w
e−�E

c /�D� − e−�E
c /�D� + O�N−1� .

�18�

The second special case is when the lead R is narrower
but situated entirely within the mirror image of lead L; we
then have N�=NR�NL. Assuming again that there is no
dephasing, magnetic field, or internal asymmetry,

�gLR =
NLNR

NL + NR
+

NLNR

�NL + NR�2�NR

NL
e−�E

c /�D� − e−�E
c /�D�

+ O�NL,R
−1 � . �19�

As one could scan the narrow lead R across the mirror image
of the wide lead L, this scenario can be thought of as a probe
of the shape of the coherent forward-scattering peak. The
fact that our result Eq. �19� is independent of the position of
lead R tells us that the forward-scattering peak is uniformly
distributed over the region defined by the mirror image of
lead L.

IV. INVERSION-SYMMETRIC QUANTUM DOT WITH
ASYMMETRIC LEADS

For systems with inversion symmetry the calculation fol-
lows much as for a left-right symmetry. The one significant
difference is the magnetic-field dependence of the contribu-
tions, which was treated in Ref. �1�. The displacement of the
leads simply requires us to replace �D with �D� in the suppres-
sion of contributions by magnetic fields, asymmetries in the
dot, and dephasing. The suppression factor, therefore, takes
the form

Zinv� �B,	asym,	�� =
exp�− 	asym�̃asym − 	��̃�

1 + �B/Bc��
2 + �	asym + 	���D�

, �20�

where Bc�=aB0
��0 /2�D� is given by Eq. �1� with �D replaced

by �D� . As a result, an inversion-symmetric quantum dot with

many modes on each lead �NL ,NR,N��1� has a total aver-
age conductance of

�ginv =
NLNR

NL + NR
+

NLNR

�NL + NR�2

� N�e−�E
c /�D�

NL + NR − N�

Zinv� �B,	asym,	�� − e−�E
c /�DZ�B,	���

+ O�NL,R
−1 � . �21�

With the exception of the magnetic-field dependence of the
second term, this formula is the same as Eq. �17� for a left-
right symmetric dot. Thus, the two special cases discussed
below Eq. �17� are directly applicable here.

V. UP-DOWN SYMMETRIC QUANTUM DOT WITH
ASYMMETRIC LEADS

For up-down symmetric systems, there are a number of
important differences with the case of left-right symmetry
discussed in Sec. III. First, a pair of paths related by the
mirror symmetry decays jointly at a rate

�D
�UD� = �D

NL + NR

2NL + 2NR − N�L − N�R
, �22�

where N�L is the number of modes in the intersection of lead
L with its own mirror image and N�R is the number of
modes in the intersection of lead R with its own mirror im-
age. Second, the successful and failed forward-scattering
contributions for left-right symmetry are converted into suc-
cessful and failed backscattering contributions for up-down
symmetry. In particular, successful backscattering makes no
contribute to the conductance. The other contributions to
transmission are not very different from those for left-right
symmetry except that one must distinguish N�L from N�R
and one must replace �D� by �D

�UD�. Summing up the contribu-
tions to conductance induced by the spatial symmetry, we
find

��gUD = −
�N�LNR

2 + N�RNL
2�exp�− �E

c /�D
�UD��

�2NL + 2NR − N�L − N�R��NL + NR�2

ZUD� �	asym,	�� , �23�

where ZUD� �	asym,	�� has the same form as ZLR� �	asym,	��
given in Eq. �16�, but with �D� replaced by �D

�UD�. Like for
left-right mirror symmetry �but unlike for inversion symme-
try� this contribution is unaffected by a magnetic field.

The average conductance of an up-down mirror-
symmetric dot with many modes on each lead is therefore

�gUD =
NLNR

NL + NR
−

NLNR

�NL + NR�2��N�LNR

NL
+

N�RNL

NR
�


exp�− �E

c /�D
�UD��ZUD� �	asym,	��

2NL + 2NR − N�L − N�R

+ exp�− �E
c /�D�Z�B,	��� + O�NL,R

−1 � . �24�

It is worth noting that the spatial symmetry induces a
reduction of conductance whenever one lead is close to sym-
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metric, even if the other lead is completely asymmetric �i.e.,
when N�L=0 but N�R�0, or vice versa�. For example,
when both leads have the same width �NL=NR=N� and the
right lead is perfectly on the symmetry axis �N�R=NR�, but
the left lead is a long way from the symmetry axis �N�L
=0�, Eq. �24� reduces to

�gUD =
N

2
−

1

4
�1

3
exp�− �E

c /�D
�UD�� + exp�− �E

c /�D�� + O�N−1�

�25�

assuming no dephasing, magnetic field, and no asymmetry in
the dot. If the Ehrenfest time is much shorter than �D and
�D

UD, the average conductance of the system with one dis-
placed lead is, therefore, simply �gUD=N /2−1 /3.

Remarkably, the conductance from the L lead to the R
lead is, therefore, affected by the symmetry of the dot even
when the L lead is completely asymmetric. This result is
perhaps less counterintuitive when one considers reflection
�rather than transmission�. If one lead is on the symmetry
axis, then reflection back to that lead will be enhanced even
if the other lead is a long way from the symmetry axis. Since
we have particle conservation, there must be an associated
reduction in transmission from one lead to the other �com-
pared to transmission in a completely asymmetric situation�.

VI. FOURFOLD SYMMETRIC QUANTUM DOT WITH
ASYMMETRIC LEADS

A quantum dot with fourfold symmetry simultaneously
possesses all three of the spatial symmetries that we discuss
in this paper. The interference corrections to the conductance
of such a system are simply the sum of the corrections due to
each of these three symmetries �i.e., the presence of the extra
symmetries has no effect on the contributions which do not
respect those symmetries�,

��g4F = ��gLR + ��ginv + ��gUD, �26�

where ��g� is the contribution to the average conductance
induced by spatial symmetry ��LR, inv,UD. The explicit
form of this result is easily extracted from the expressions in
the previous sections. Instead of writing it out in full, we
consider the special case where the two leads have the same
width, NL=NR=N, the Ehrenfest time is negligible and there
is no dephasing, magnetic field, or asymmetry in the dot. The
average conductance then takes the form

�g4F =
N

2
+

1

4
� N�LR

2N − N�LR
+

N�inv

2N − N�inv

−
N�UD:L + N�UD:R

4N − N�UD:L − N�UD:R
− 1� , �27�

where N�LR is the intersection between leads L and R under
the left-right symmetry, N�inv is the intersection between
leads L and R under the inversion symmetry, and N�UD:L
�N�UD:R� is the intersection of lead L �R� with itself under
the up-down symmetry. The final term in the square bracket
is the usual weak localization contribution.

Since the presence of two of the above-mentioned sym-
metries always implies the presence of the third, it is not

possible to move the leads such that only one of the N�

parameters changes. Without affecting the integrity of the
leads there are only two possible modifications for which
only two of the parameters change; starting with perfectly
symmetric leads one can �a� move both leads upward by the
same amount so that N�LR is unchanged or �b� move both
leads by the same amount in opposite directions �one up and
one down� so that N�inv is unchanged. In principle, it is also
possible to break up a single lead �say L� in the middle and
move the two parts into opposite directions �both parts would
still be contacted by the same source or drain electrode�; this
preserves N�L and N�R but affects the other parameters.
However, the latter deformation is difficult to realize in prac-
tice.

VII. UNIVERSAL CONDUCTANCE FLUCTUATIONS
WITH DISPLACED LEADS

Now we turn to the magnitude of UCFs in symmetric dots
with asymmetric leads. Their calculation is generally far
more complicated than the calculation of the average con-
ductance. This is illustrated by the fact that there is as yet no
semiclassical theory of UCFs for leads with tunnel barriers, a
problem which has many similarities to the problem we need
to solve here. Thus, we restrict ourselves to the simplest case
of quantum dots with negligible Ehrenfest time and negli-
gible dephasing, and only consider magnetic fields which are
either negligibly small �B�Bc�, or sufficiently strong to
break time-reversal symmetry in the asymmetric system �B
�Bc�.

The magnitude of the UCFs �with conductances measured
in units of e2 /h� is given by var�g�=var�T�, where T
=tr�t†t� and t is the block of the scattering matrix S= � r t�

t r�
�

associated with transmission from lead L to lead R. For prac-
tical calculations it is beneficial to exploit the unitarity of the
scattering matrix �i.e., current conservation�, which results in
the relations T=NL−R=NR−R� with R=tr�r†r� and R�
=tr�r�†r��, where r is the block of the scattering matrix as-
sociated with reflection back to lead L and r� describes re-
flection back to lead R. As a result we can write the magni-
tude of the UCFs in any of the following ways:

var�g� = var�R� = var�R�� = covar�R,R�� . �28�

As for conventional UCFs without spatial symmetries
�19,20�, the semiclassical calculation of covar�R ,R�� is most
straightforward; thus, we base our calculations on this quan-
tity. For the expert reader, the Appendix contains an outline
of the calculation of var�R� and var�R�� showing that they
equal covar�R ,R��.

All symmetry-induced contributions to covar�R ,R�� for
an up-down symmetric dot are listed in Fig. 4. For a left-
right or inversion-symmetric dot there are additional contri-
butions, which are listed in Fig. 5. In all cases, when paths 2
and 2� are not paired with each other, they are paired with
the images of paths 1� and 1 under the appropriate symmetry
operation. To keep the sketches in Figs. 4 and 5 as clear as
possible, we only show these images of paths 1 and 1�
�rather than paths 1 and 1� themselves�. Then the resulting
contributions look very much like the usual contributions to
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UCFs in a system without a spatial symmetry �19,20�.
In analogy to the situation in asymmetric systems, one

would also expect contributions in which paths wind around
periodic orbits �see Figs. 1b and 1c in Ref. �20��. For ex-
ample, a symmetric quantum dot will have contributions in
which path 1� is the same as path 1 except that it winds
around a periodic orbit p when path 1 does not �thus path 1
must come very close to the periodic orbit in phase space�,
while path 2 is the same as path 2� except that it winds
around the image of the orbit p. These contributions are pro-
portional to those analyzed for UCFs in asymmetric dots, the
only modification being that the joint survival probability of
a periodic orbit and its image is again changed to
exp�−t /�D� �. Drawing on the results of Refs. �19,20�, it fol-
lows that the contributions involving windings around peri-
odic orbits will be negligibly small when the Ehrenfest time
is small. �This observation makes the calculation of the
UCFs in the present problem significantly simpler than for
the case with tunnel barriers, where one cannot rule out con-
tributions from periodic orbits which touch the barriers on
the leads.�

A. Effect of time-reversal symmetry

Inspecting the sketches in Figs. 4 and 5 we see that all
contributions are doubled when the magnetic field is negli-

gible, because path 2 can either follow the image of path 1�
or the time reverse of path 1�. Thus, we can multiply all
terms by 2 /�, where �=1 for a system with negligible mag-
netic field, B�Bc and �=2 for a system with a finite mag-
netic field, B�Bc. In the latter case the presence of mirror-
reflection symmetries allows one to define a generalized
time-reversal symmetry; however, this is already accounted
for in the construction of all diagrams �see Appendix A of
Ref. �1��.

B. UCFs in an up-down symmetric dot

The general rules for constructing all contributions to the
UCFs are the following. Each segment where path 2 or 2� is
paired with the image of path 1� or 1 gives a factor of
�2NL+2NR−N�L−N�R�−1, which arises from the survival
time �D

UD given in Eq. �22�. Each segment where paths 2 and
2� are paired �or paths 1 and 1� are paired� gives a factor of
�NL+NR�−1, which comes from the conventional survival
time �D. Each segment that touches a lead gives a factor
equal to the number of lead modes that the path could couple
to; i.e., a lead labeled “R− �R” gives a factor of �NR
−N�R�, while a lead labeled “R” simply gives a factor of NR.
An encounter which touches a lead gives the same factor as
a simple path segment that touches a lead, so again if it is
labeled “R− �R” then it gives a factor of �NR−N�R�. �This
rule is proven by applying the same analysis as was used for
the successful and failed forward-scattering processes in Sec.
III A.� Finally, encounters deep in the dot �i.e., those which
do not touch the leads� give a factor of −�2NL+2NR−N�L
−N�R� �this rule can be proven by applying the same analy-
sis as was used for the uniform contributions to transmission
in Sec. III B�. With this set of rules we can easily see that
contribution �i� in Fig. 4 gives
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FIG. 4. �Color online� A sketch of semiclassical contributions to
UCFs �more specifically, contributions to covar�R ,R��� for an up-
down symmetric dot with asymmetric leads. There are analogous
contributions to UCFs for left-right or inversion-symmetric dots
�see explanation in the text�. In each contribution, paths 1 and 1� go
from L lead to L lead, while paths 2 and 2� go from R lead to R
lead. In the sketches, solid lines indicate paths 2 and the image
�mirror image or image under the inversion symmetry� of paths 1.
Path 2� and the image of path 1� are indicated by the dashed lines
�only shown at the encounters�. Thus when paths 2 and 2� are not
paired with each other they are paired with the image of 1� and 1,
respectively �indicated by solid arrowheads�. If the system has a
time-reversal symmetry then paths 2 and 2� can also be paired with
the time reverses of the image of 1� and 1, respectively �indicated
by the open arrowheads�.
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FIG. 5. �Color online� A sketch of additional semiclassical con-
tributions to UCFs �more specifically, contributions to covar�R ,R���
for left-right or inversion-symmetric dots with asymmetric leads.
The contributions listed here must be added to those listed in Fig. 4
�once one sets �L= �R=�� to get the full set of contributions for
left-right or inversion-symmetric dots. The manner in which the
contributions are sketched is explained in the caption of Fig. 4.
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Ci =
2

�

NL
2�NR − N�R�2 + 2NL�NL − N�L�NR�NR − N�R� + �NL − N�L�2NR

2

�2NL + 2NR − N�L − N�R�2�NL + NR�2 . �29�

Next we see that Ciii=Cii and that they are negative because
only one of the encounters is deep in the dot �the other is
near a lead� resulting in

Cii + Ciii = − 2
2

�

NL
2NR�NR − N�R� + NL�NL − N�L�NR

2

�2NL + 2NR − N�L − N�R��NL + NR�3 .

�30�

Finally Civ gives a positive contribution because it has two
encounters deep in the dot and is given by

Civ =
2

�

NL
2NR

2

�NL + NR�4 . �31�

The total magnitude of the UCFs is given by the UCFs of
an asymmetric dot, var�g�asym, plus the sum of the terms
above, i.e., var�g�=var�g�asym+Ci+Cii+Ciii+Civ. In the limit
of perfectly symmetric leads �N�L=NL and N�R=NR�, only
Civ survives and the UCFs have double the magnitude as
those for an asymmetric dot. In the limit of completely asym-
metric leads �N�L=N�R=0�, one has Ci+Cii+Ciii+Civ=0
and the UCFs have the same magnitude as those for an
asymmetric dot.

To express var�g� for arbitrary NL, NR, N�L, and N�R, we
find it beneficial to introduce the quantities n�=N� / �NL
+NR� and w�=1−N�� /N�, where �=L,R. Making use of the
fact that nL+nR=1, we find

var�g� = var�g�asym +
2

�
nL

2nR
2�1 − �1 − nL�wL − �1 − nR�wR

1 + nLwL + nRwR
�2

,

�32�

where in this notation var�g�asym= �2 /��nL
2nR

2 . In the special
case where NL=NR, displacing the leads suppresses the
symmetry-induced contribution to UCFs by a factor ��2
−wL−wR� / �2+wL+wR��2.

In terms of the original quantities NL, NR, N�L, and N�R,
Eq. �32� takes the form

var�g� = var�g�asym

+
2

�

NL
2NR

2

�NL + NR�4�NRN�L/NL + NLN�R/NR

2NL + 2NR − N�L − N�R
�2

,

�33�

where var�g�asym= �2 /��NL
2NR

2 �NL+NR�−4. Comparison with
Eq. �24� shows that lead displacement suppresses the
symmetry-induced contributions to UCFs by a factor that is
the square of the suppression of the symmetry-induced con-
tributions to the average conductance.

C. UCFs in a left-right or inversion-symmetric quantum dot

For a systems with a left-right or an inversion symmetry,
we once again find the magnitude of the UCFs by evaluating

covar�R ,R��. For these symmetries, we must consider the
contributions in Fig. 5 in addition to those in Fig. 4. The
origin of the extra contributions in Fig. 5 is most clearly
understood by considering the case of perfectly symmetric
leads. Then the left-right and inversion symmetries map lead
L onto lead R, which means that if path 2 is paired with path
1� then path 2 will hit lead R when path 1� hits lead L
�meaning the image of path 1� hits lead R�. One can thereby
immediately see that the contribution Cv in Fig. 5 contributes
to covar�RL ,RR� �this was not the case for up-down symme-
try, since there path 1� hits the same lead as the image of
path 1��. For asymmetric leads a similar situation occurs. If
path 1� hits the intersection region of width W� on lead L
then its image hits lead R; thus, path 2 will also hit lead R if
it is paired with 1� over this segment.

The rules to evaluate each contribution are the same as for
up-down symmetry, with now necessarily N�L=N�R=N�.
Using these rules, we find that

Cv + Cvi =
2

�

4N�NLNR − N�
2 �NL + NR�

�2NL + NR − 2N��2�NL + NR�
, �34�

Cvii + Cviii = −
2

�

2N�NLNR

�2NL + NR − 2N���NL + NR�2 . �35�

Summing these contributions and writing the result with the
same denominator as Eq. �33� gives

Cv + Cvi + Cvii + Cviii = −
2

�

N�
2 �NL

2 − NR
2 �2

�2NL + NR − 2N��2�NL + NR�4 .

�36�

Adding this set of contribution to those already calculated in
the previous section, we find that the UCFs of a left-right or
inversion-symmetric dot with asymmetric leads is given by

var�g� = var�g�asym +
2

�

NL
2NR

2

�NL + NR�4� N�

NL + NR − N�
�2

.

�37�

By comparing this with Eq. �17�, we find that the suppres-
sion of symmetry-induced contributions to UCFs is the
square of suppression of the symmetry-induced contributions
to the average conductance �just as we already found for an
up-down symmetric system�.

D. UCFs in a fourfold symmetric

For completeness, we now briefly discuss UCFs in a four-
fold symmetric dot with asymmetric leads. A fourfold dot
has all three of the symmetries discussed above. Thus, the
UCFs in a fourfold symmetric system are given by the sum
of all possible symmetry-induced contributions �just as with
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symmetric leads �1��. Given the results in the preceding sec-
tions, the general formula is easily determined. Here we give
the result for the special case NL=NR=N,

var�g� =
1

8�
�� N�LR

2N − N�LR
�2

+ � N�inv

2N − N�inv
�2

+ � N�UD:L + N�UD:R

4N − N�UD:L − N�UD:R
�2

+ 1� , �38�

where N�LR is the intersection between leads L and R under
the left-right symmetry, N�inv is the intersection between
leads L and R under the inversion symmetry, and N�UD:L
�N�UD:R� is the intersection of lead L �R� with itself under
the up-down symmetry. The final term in the square bracket
represents the usual UCFs for an asymmetric dot. Note that
the suppression of each symmetry-induced term goes like the
square of the equivalent term in the average conductance,
Eq. �27�.

VIII. COMPARISON TO RANDOM-MATRIX THEORY

In this section we compare the semiclassical predictions
derived in the previous sections to numerical results obtained
from a phenomenological random-matrix model. This model
generalizes the construction discussed in Sec. 9 of part I
�Ref. �1��.

The general framework is the same as in part I: the con-
ductance is obtained from the Landauer formula g=tr�t†t�,
where t is the transmission block of a scattering matrix S
= � r t�

t r�
� given by

S = PT�1 − FQ�−1FP . �39�

Here, F is an internal unitary evolution operator of dimen-
sion M while P is an M 2N dimensional matrix specified
below and Q=1− PPT.

In part I we assumed that the leads respect the geometrical
symmetries, which allows to fully desymmetrize the system.
One can then introduce a fixed form of the matrix P and
attribute the effects of symmetries solely to the internal dy-
namics �the resulting RMT ensembles for F are given in
Table II of Ref. �1��. It is clear that this full desymmetriza-
tion fails when leads are to be displaced. For up-down sym-
metry, for instances, desymmetrization identifies two effec-
tively separate systems �consisting of modes of even and odd
parity� which do not couple to each other. Shifting lead
modes in this representation has no effect since RMT is in-
variant under the permutation of matrix indices. A real dis-
placement of leads, however, mixes the states of even and
odd parity. The reason for this discrepancy is that leads are
defined locally in real space, while parity is a global symme-
try which connects remote parts of the system.

It is therefore necessary to define both the internal evolu-
tion operator F as well as the coupling to the leads P in a
way which resembles modes in a real-space basis. In prin-
ciple, this can be done, e.g., based on the sinusoidal trans-
verse mode profiles of a strip resonator. We adopt a similar
but more efficient procedure whose principle idea is shown
in Fig. 6. The illustration shows an abstract scatterer with M

ports which serve as possible contacts to the system. For
each lead we select N ports �with index in for lead L and jn

for lead R�; the remaining ports are closed off. The internal
evolution operator F describes the transport from port to
port. The scattering matrix is then given by Eq. �39� where
Pmn=�m,in

+�m,jn−N
.

A crucial point of the illustration in Fig. 6 is the numera-
tion of ports, which are grouped into four segments that map
in specific ways onto each other when symmetry operations
are applied. �i� Left-right symmetry maps segment 1 onto
segment 3 and segment 2 onto segment 4. �ii� Up-down sym-
metry maps segment 1 onto segment 2 and segment 3 onto
segment 4. �iii� Inversion symmetry maps segment 1 onto
segment 4 and segment 2 onto segment 3. �iv� Fourfold sym-
metry maps all segments onto each other.

In the basis of these ports, the explicit symmetries of the
internal evolution operator F are specified in Table I. Since
up-down and left-right symmetries are both manifestations of
a reflection symmetry, they are now simply related by a in-
terchanging segments 2 and 3 �as described by the matrix C
defined in Table I�; this is a consequence of the fact that we
do not fully desymmetrize the up-down symmetry �the left-
right symmetric case can never be fully desymmetrized be-
cause one has to keep track of the identity of the leads�. A
finite magnetic field breaks these symmetries but still allows
one to define a generalized time-reversal symmetry. Simi-
larly, for vanishing magnetic field, inversion symmetry is
obtained from reflection symmetry by interchanging seg-
ments 3 and 4 �as described by the matrix D defined in the
table caption�. The slightly different systematics in the pres-
ence of a magnetic field arises because the orientation of the
segments matters; consequently, for inversion symmetry,
time-reversal symmetry is effectively broken but the geomet-
ric symmetry itself is still present in the dynamics �trajecto-
ries still occur in symmetry-related pairs�.

A convenient choice of a fully symmetry-respecting ar-
rangement of leads which applies to all internal symmetries
is given by

F

1

2

3

4

FIG. 6. Left panel: model of a scatterer �central circle� with
internal evolution operator F coupled to ports to which modes of
the leads can be attached. The labels identify four segments in
which the ports are numerated in the direction of the arrow �port 1
to M /4 in segment 1, port M /4+1 to M /2 in segment 2, port
M /2+1 to 3M /4 in segment 3, and port 3M /4+1 to M in segment
4�. The dashed lines indicate the possible lines of reflection sym-
metry. Middle and right panels: filled circles indicate ports coupled
to the left lead; shaded circles indicate ports coupled to the right
lead. Shown are a fully symmetry-respecting arrangement and an
arrangement in which both leads are displaced, respectively.
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P =�
1NN 0NN 0NN 0NN

0MN 0MN 0MN 0MN

0NN 1NN 0NN 0NN

0MN 0MN 0MN 0MN

0NN 0NN 1NN 0NN

0MN 0MN 0MN 0MN

0NN 0NN 0NN 1NN

0MN 0MN 0MN 0MN

� , �40�

where N=N /2 and M=M /4−N /2. The case of a fourfold
symmetry in principle allows two symmetry-respecting ar-
rangements �aligned along each of the two symmetry lines of
reflection�; these two arrangements are equivalent in RMT
and again related by a reshuffling of the four segments. The
form of P for generally placed leads is easily read off Fig. 6.

Figure 7 �for B�Bc� and Fig. 8 �for B�Bc� show how the
weak localization correction and universal conductance fluc-
tuations are affected when the leads are moved away from
the symmetry-respecting positions. The degree of displace-
ment is quantified by a variable �=1−W� /W ��=0 in the
symmetric arrangement; �=1 in the asymmetric arrange-
ment�. The data points are based on an ensemble average
over 5000 RMT matrices with M =1000 and N=50, while the
curves are the predictions of our semiclassical theory, which
can be written as

�g��� = �g�1� + ��g�0� − �g�1��
1 − �

1 + �
, �41�

var g��� = var g�1� + �var g�0� − var g�1���1 − �

1 + �
�2

.

�42�

Starting from a fourfold symmetry, leads can be displaced in
a manner which still preserves left-right, inversion, or up-
down symmetry. To preserve up-down symmetry alone, one

can imagine splitting one lead in two and moving the two
parts in opposite directions �both parts would remain con-
tacted to the same source or drain electrode�. The remaining
symmetry of the lead arrangement can then be broken by
further displacement of the leads. In the figures, the subscript
4 is used to distinguish these situations �in which the under-

lying internal symmetry is fourfold� from the symmetry
breaking in systems with only a single internal symmetry.
E.g., the label “left / right4→asymmetric4” refers to the dis-
placement of leads out of a left-right symmetric position
where the internal symmetry is fourfold, while the label
“left / right→asymmetric” refers to the displacement of leads
out of a left-right symmetric position where the internal sym-
metry is itself only left-right symmetric. According to our
theory, the weak localization correction should behave iden-
tically in both situations; this also applies to the UCFs. This
statement is validated by the numerical data. Indeed, excel-
lent agreement of the numerical data with the semiclassical
predictions is observed in all cases.

As discussed earlier in this paper, in the up-down sym-
metric case it is interesting to displace only one lead while
the other lead remains on the symmetry line �the symmetry-
preserving positions in the up-down symmetric case are ab-
solute, in contrast to the left-right symmetric case where
these positions are relative to each other�. The effect on the
transport is shown in Fig. 9, along with the effect of the
consecutive displacement of the second lead, and the simul-
taneous displacement of both leads. According to our theory,
the effects of consecutive displacement of the leads are cu-
mulative: the displacement of the first lead is described by
Eqs. �41� and �42� with �→� /2 �covering the range �0,1/2��,
while the displacement of the second lead completes the
transition according to the substitution �→ �1+�� /2 �cover-
ing the range �1/2,1��. The numerical results are in perfect
agreement with this prediction.

We conclude with some additional remarks on the RMT
model. For leads which respect the symmetries, the construc-
tion presented here is equivalent to the model presented in
part I �which then is more efficient�; this equivalence also

TABLE I. Random-matrix ensembles for the internal evolution operator F in a basis which is suitable for
displacing the leads �see Fig. 6�. The different entries refer to various geometric symmetries in absence or
presence of a magnetic field. We only consider the case M mod 4=0. Block composition of two identical
matrix ensembles of dimension M is abbreviated as X2�M�=X�M� � X�M�. COE denotes the circular orthogo-
nal ensemble while CUE denotes the circular unitary ensemble.

B=0 B�Bc

No spatial sym. COE�M� CUE�M�
Left-right sym. A†COE2�M /2� A A†COE�M� A

Inversion sym. DA†COE2�M /2� AD DA†CUE2�M /2� AD

Up-down sym. CA†CUE2�M /2� AC CA†COE�M� AC

Fourfold sym. DA†�A†CUE2�M /4�A�2AD DA†�A†COE�M /2�A�2AD

with A = 2−1/2�1 1

i − i
� , C =�

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1
� and D =�

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
�
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extends to the symmetry breaking in the internal dynamics,
which then requires to interpolate between ensembles of
Table I. Following earlier works, the RMT model can be
further utilized to include the effects of dephasing and a fi-
nite Ehrenfest time. For dephasing, this is achieved by open-
ing additional ports which couple to a voltage probe �25� or

a dephasing stub �26�. A finite Ehrenfest time is obtained
when F represents a dynamical system such as the kicked
rotator �11� �which also possesses discrete symmetries�. This
strategy can also be used to probe the case of dynamics
which are not fully chaotic �which in the kicked rotator is
achieved for moderate values of the kicking strength�.
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FIG. 7. �Color online� Weak localization correction �WL, left panels� and universal conductance fluctuations �UCF, right panels� as a
function of the displacement of both leads from their symmetry-respecting positions for systems with fixed internal symmetry. The displace-
ment is measured in terms of �=1−W� /W. The data points �circles with a variety of filling styles� are obtained from an average over 5000
realizations of the RMT model described in the text �M =1000, N=50�. The curves show semiclassical prediction �41� for WL and Eq. �42�
for UCF. Labels “A→B” specify the symmetry of the lead arrangement at �=0 �symmetric arrangement� and �=1 �where at least one of the
symmetries is fully removed�. In these labels, the subscript 4 on A or B indicates that the internal symmetry is fourfold; if this subscript is
not present the internal symmetry is identical to the one specified by A. In this figure, the magnetic field is set to B=0.

WHITNEY, SCHOMERUS, AND KOPP PHYSICAL REVIEW E 80, 056210 �2009�

056210-12



IX. CONCLUDING REMARKS

The transport calculations performed here assume that the
classical dynamics is uniformly chaotic and in particular do
not apply to system with islands of stability in phase space
�such as the annular billiard studied in Refs. �27,28�� or net-
works of chaotic dots interconnected by narrow leads �such
as the double dot in Ref. �7��. It would be intriguing to study
the shape of the backscattering and forward-scattering peaks
for such systems.
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APPENDIX: OBTAINING UCFS FROM THE VARIANCE
OF REFLECTION

In Sec. VII we pointed out that unitarity implies
covar�RL ,RR�=var�RL�=var�RR�. Here we outline a semi-
classical calculation of var�RL�, which acts as a check of the
semiclassical calculation of covar�RL ,RR� in Sec. VII. The
rules to calculate each contribution remain the same as for
covar�RL ,RR�. However, the contributions that we consider
differ by the requirement that all paths start and end on the
same lead L.
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FIG. 8. �Color online� Same as Fig. 7 but for a finite magnetic field.
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We know that the result must be invariant under the inter-
change of labels “L” and “R” and this invariance is mani-
festly obvious in the contributions to covar�RL ,RR�. In con-
trast, this invariance is hidden in the contributions to var�RL�
that we discuss here. Thus, the simplest check that one has
not missed any contributions is that this invariance is present
when one sums the contributions.

1. Up-down symmetric dot

In the case of an up-down symmetric dot, all contributions
in both Figs. 4 and 5 contribute to var�RL� once we change
all lead labels so that “R” → “L” and “�R” → “ �L” �but
not vice versa�. Writing contributions to var�RL� with a
“prime” �to distinguish them from contributions to
covar�RL ,RR�� we find

Cv� + Cvi� + Ci� =
2

�

N�L
2 �NL + NR�2 + 4N�L�NL − N�L�NL�NL + NR� + 4�NL − N�L�2NL

2

�2NL + 2NR − N�L − N�R�2�NL + NR�2 , �A1�

Cvii� + Cviii� + Cii� + Ciii� = −
2

�

2NL
2�N�L�NL + NR� + 2�NL − N�L�NL�

�2NL + 2NR − N�L − N�R��NL + NR�3 , �A2�

Civ� =
2

�

NL
4

�NL + NR�4 . �A3�
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FIG. 9. �Color online� Same as Figs. 7 and 8, but comparing the displacement of both leads for internal up-down symmetry �solid circles�
to the displacement of the first lead �circles filled on the right�, followed by the displacement of the second lead �circles filled on the left�.
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As in Sec. VII, we find that this sum is most easily evalu-
ated by rewriting the contributions in terms n�=N� / �NL
+NR� and w�=1−N�� /N� for �=L,R. Performing a little
algebra using nL+nR=1, we then recover Eq. �32� and, there-
fore, var�RL�=covar�RL ,RR�. Furthermore, Eq. �32� is invari-
ant under the interchange of labels L and R, which entails
var�RR�=var�RL�. Thus, the semiclassical method obeys the
relations var�RL�=var�RR�=covar�RL ,RR� as required by the
unitarity of the scattering matrix. This strongly suggests that
we have not missed any contributions and gives us confi-
dence in the result; particularly, it is noteworthy that the
individual contributions in var�RL� and covar�RL ,RR� com-
bine in very different ways to give the invariance under the
interchange of L and R.

2. Left-right or inversion-symmetric dot

The evaluation of var�RL� for a left-right or inversion-
symmetric dot is very similar to that for an up-down sym-
metric dot. However, here, when a path hits the L lead then

its image hits the R lead. This means that there are no con-
tributions to var�RL� of the form shown in Fig. 5, since all
paths must go from the L lead to the L lead. Thus, to get
var�RL� for a left-right or inversion-symmetric dot, we need
to subtract those contributions from the result for var�RL� in
an up-down symmetric dot. The sum of these contributions
to var�RL�, written with the same denominator as in Eq. �33�,
is

Cv� + Cvi� + Cvii� + Cviii� =
2

�

N�
2 �NL

2 − NR
2 �2

�2NL + NR − 2N��2�NL + NR�4 .

�A4�

This only differs by an overall sign from the sum of contri-
butions in Eq. �36�. Subtracting this from the result Eq. �33�,
we get var�RL� for a left-right or inversion-symmetric dot.
The result equals covar�RL ,RR� given by Eq. �37�; thus, we
have covar�RL ,RR�=var�RL�=var�RR� as required by the
unitarity of the scattering matrix.
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